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Memorization: the Good, the Bad and the Ugly

* Informally, a model memorizes a data sample
(X, y) if it can only correctly predicty when
trained on (X, y)

* Occuring frequently for over-parameterized
models

Does Learning Require Memorization?
A Short Tale about a Long Tail’
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Memorization: the Good, the Bad and the Ugly

Samsung Bans ChatGPT Among
Employees After Sensitive Code
Leak
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Differential Privacy (DP

* A mathematical framework that limits memorization
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DP-SGD
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DP-SGD & Utility Degredation

Dataset Without Differential With Differential
Privacy Privacy

MNIST 99.8% 98.1%
(2.93, 10%-5)-DP
CIFAR-10 99.7% 66.2%

(7.53, 10~-5)-DP

Nicolas Papernot, Abhradeep Thakurta, Shuang Song, Steve Chien, and Ulfar Erlingsson. Tempered sigmoid activations for deep learning
with differential privacy. arXiv preprint arXiv:2007.14191, 2020.



Mitigating Utility Degredation
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MNLI-matched (Williams et al., 2018) https://differentialprivacy.org/dp-fine-tuning/


https://differentialprivacy.org/dp-fine-tuning/

Limitations of DP-SGD

NLP’s Moore’s Law: Every year model size increases by 10x
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The Challenge of DP Prediction

Definition (Private prediction interface)': A prediction interface M is (¢, §)-DP if for every interactive
query generating algorithm Q, the output (Q = M(S)) is (¢, 5)-DP with respect to dataset S.
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Dwork, Cynthia, and Vitaly Feldman. "Privacy-preserving prediction." Conference On Learning Theory. PMLR, 2018.
Majmudar, Jimit, et al. "Differentially private decoding in large language models." arXiv preprint arXiv:2205.13621 (2022).



Background: Renyi Differential Privacy

* Renyi Divergence:
_ 1 P(x)\*
DC{(P”Q) - a—1 log [EX~Q [(Q(X)) ]
* D;” (P11Q) = max{D,(P|1Q), D (QlIP)}
e LletD = {Dl' Dz, cen DN} and D—l — {Dl’ ...,Di_l, Di+1’ e DN}

* An algorithm Ais (¢, «)-RDP if it holds that
* supmax Dy (A(D)||A(D_)) < €
D 1




Strategically Achieving DP Next-Token
Prediction

* Two defining properties of DP:
1. Randomness (Gaussian Noise)
2. Privacy loss bounds (€)

1. Randomness is free via sampling LLM output distribution
2. Utilize Public model to bound privacy loss



Private Mixing of Ensemble Distributions
(PMIxXED)
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PMixXED: Some Technical Details

1. ﬁi(xt) = Aipi(xe) + (1 — A)po(xy)

2. A < argmaxle[ojl]{D&_} (@(xt)llpo(xt)) < ,Ba}
1 —_

3. Y~ Ezliv=1 p,;(x¢)

(log(N—1+epr(\§a—1)4,Ba)))

a—1

4. Privacyloss: e(a) <



Privacy Guarantee Implications

* PMIXED guarantees group-level DP

* DP applies to each subset D;

e Stronger guarantee than DP-SGD
* Insufficient guarantee for language modeling

* Flexibility for analyst

* Privacy loss dependson N and 3
* The selection of N and 5 does not use private data, hence no privacy loss

* Sampling based decoding method used
* Does not apply to greedy decoding



Experimental Setup

* Model: GPT-2 Small
 Parameter Efficient Fine-Tuning: Low Rank Adaption (LoRA)
* Datasets: WikiText-103 and One Billion Word

* Three Baselines:
* Public model: Pre-trained GPT-2
* Private model: finetuned GPT-2
* DP-SGD model

* Metric: Perplexity (PPL)



Main Results

Parameter Value
Privacy Budget: ¢ 8
Runs: 32
Probability of Failure: ¢ le-5
Renyi Divergence Order: o 3
Inference Budget: T° 1024
Number of Ensembles: NV 80
Subsample Probability: p  0.03
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Remarks

* PMIXED uses sampling and mixing of private and public
distributions

* PMIXED outperforms DP-SGD on large-scale datasets for
reasonable query budgets

* DP Prediction Definition too rigid
* Fixed Query Budget T
* Difficult to know ahead of time

* Fixed Privacy guarantee
* Guarantee decays after exceeding query budget



Adaptive PMixED (AdaPMixED)

Noisy Screening
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AdaPMixED: Noisy Screening

* Small A; leads to large D’ (ﬁi(xt)llpo(xt))

* Not worth privacy loss
Choose A then calculate p(x;) = %Z?’:l(ﬂpi(xt) + (1 — Dpo(xs))
» Screen predictions by D’ (E(xt)HpO(xt)) <T
» How to privatize Dy~ (p(x¢)||po(x1))?

- Privatize p(x,) then calculate Dy~ (p(x¢)||po(xp))
* p(x¢)~ 50,000 dimensional



AdaPMixED: Noisy Screening

* Truncate p(x;)
* Choosing Top-k indicies from p(x,) leaks privacy
* Choose Top-k K indicies from py(x;)

* Setp(x)[V\K] < 0

e Rescale such that ZjEKﬁ(xt)[j] =1

* Privacy loss: € = (NLG)Z a



AdaPMIxED: Data-dependent Privacy Loss

+ 4; = 1but DF” (B,(x)|Ipo(x) ) « fa

* Private and public output distributions are similar
* Overestimated [fa leads to wasted privacy loss

* Adaptively adjust fa?
* Leak privacy if based on D’ (ﬁi(xt) | |p0(xt))
. 1 — 1 p=
+ Define p(x,) =+ BiL, B,(x) and p_i(x) = 75 27, (x)
*€(D) = f?ﬁv’ﬁ{D‘;_) (pCe)p-i(x))}



Data-dependent Privacy Loss Implications

* Data-dependent Privacy Loss introduced in PATE (Papernot 2017,
2018)

 Privacy Loss €(D) is a function of private data
« Must privatize €(D) before release



Main Results

Dataset Method Queries Answered | Privacy loss ¢ | PPL
Public model 1024 0 40.86

DP-SGD 1024 8 35.09

PMixED [ 4] 1024 8 33.8

WikiText-103 | PMixED with noisy screening 1024 5.958 35.24
AdaPMixED 1024 0.494 32.35

DP-SGD 99,840 8 32.53

AdaPMixED 99,840 5.248 29.99

Public model 1024 0 67.73

DP-SGD 1024 8 54.54

o PMixED [ 4] 1024 8 52.68

One BIION " pMixED with noisy screening 1024 5931 | 54.99
AdaPMixED 1024 0.485 49.25

DP-SGD 99,840 8 52.97

AdaPMixED

99,840

47.99




Results: Privacy-Utility Tradeoff of Data-

Dependent Analysis and Noisy Screening

Method Prlva.cy PPL | #>T Mechanism PI‘IVET.C)/
Loss: € loss: €
PMixED 4.399 38.07 0 EPMixED(Of; ;8, N, D, X) 0.472
PMixED with noisy screening | 4.139 | 38.15 716 Escreen (@, N, A, 0) 0.002
AdaPMixED with only RDP to DP 0.450
Data-dependence 0.960 | 31.42 0 (Theorem A.3) '
AdaPMixED 0.924 | 31.75 | 1026 Total 0.924




Conclusion

* Memorization of LLMs warrants privacy-preserving techniques

* DP-SGD contains too strong adversarial capabilities in black-box
setting

* Large-scale DP prediction is practical for LLMs
* Opens further investigation
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